Best rated cut to length line manufacturer: What is the protection scope of gas protection? In oil-immersed transformers, the scope of gas protection inside the transformer mainly includes the gas content in the transformer oil. Normally, the oil in an oil-immersed transformer is used for insulation and cooling, but when the transformer fails or ages inside, gases such as gas and hydrogen will be generated, which will lead to an increase in the gas content in the oil. If the gas content in the oil is too high, it will cause the insulation performance of the oil to decrease, which will cause the transformer to malfunction or even explode. Therefore, in order to protect the safe operation of the transformer, it is necessary to monitor and control the gas content in the transformer oil. Generally speaking, the gas relay is a commonly used gas monitoring device in oil. The gas relay can monitor the change of the gas content in the oil, and send out an alarm signal when the gas concentration exceeds a certain threshold, so as to carry out repair and maintenance in time. In short, the gas protection range inside the transformer mainly refers to the gas content in the transformer oil, which needs to be monitored and controlled by devices such as gas relays to protect the safe operation of the transformer. See extra details on transformer coil.
Why does the current source inverter need a larger transformer capacity? Current source inverter is a common type of inverter. Its control method adopts current loop control, which has the advantages of high precision and strong adaptability, and is widely used in industrial production. Due to the working characteristics of the current source inverter, a large transformer capacity is required for the following reasons: The current source inverter adopts the intermediate inductance: the current source inverter adopts the intermediate inductor, which can realize the phase difference between the output voltage and the current, so as to realize the frequency conversion control. However, since the intermediate inductor needs to withstand large current and voltage, it is necessary to select a transformer with a larger capacity to ensure the normal operation of the inductor.
Epoxy resin is non – combustible, flame retardant, self – extinguishing solid insulation material, safe and clean. It is also a solid insulation material with proven insulation and heat dissipation technology for more than 40 years.Epoxy resin products can be used for dry type transformer, for insulation parts, for instrument transformer, for electrical composite parts and for room temperature curing. Epoxy resin dry transformer uses epoxy resin as insulation material. The high and low voltage windings are made of copper tape (foil), industrial epoxy resin is poured in vacuum and cured, forming a high strength FRP body structure. Insulation grade F, H. Epoxy resin dry transformer has the characteristics of good electrical performance, strong resistance to lightning impact, strong resistance to short circuit, small size and light weight. Temperature display controller can be installed to display and control the operating temperature of the transformer winding to ensure the normal service life of the transformer.
Oil immersed transformers are the most commonly used equipment mainly because of their simple structure and reliable operation. It has faster heat dissipation, uniform conduction, and better insulation performance than the dry-type transformer.Oil transformers are used in power distribution or electrical substations. Their transformer core and coils are immersed in oil, which cools and insulates. Oil circulates through ducts in the coil and around the coil and core assembly, moved by convection.
A transformer core is a static device that provides a channel for magnetic flux to flow in a transformer. The core is constructed using thin strips of silicone steel. The silicon steel sheets are electrically isolated and coupled to reduce no-load losses in the transformer.The core of a transformer is made of soft iron. Transformers are used in various fields like power generation grid, distribution sector, transmission, and electric energy consumption.
The company mainly produces 150 model oil-type transformercore shearing equipment below 1 600KVA, 300 model dry type transformer core shearing equipment below 6300KVA, 400 model special transformer core shearing equipment below 12500KVA and 600 model special transformer core shearing equipment below 63000KVA. 800 model extra transformer core shearing equipment, 1000 model extra transformer core shearing equipment, the type 1250 model CRGsilicon steel CNC slitting machine, and the dry type transformer core under 110KV automatic cutting and laminated processing center, oil transformer core automatic cutting robot automatic lamination processing center, reactor cutting center below 35Kv, 220KV high voltage transformer tc. CANWIN hire famous designer in Europe as our senior consultant, and germany Siemens as our strategic partner. The products have formed 5 series and more than 50 specifications.
CANWIN AUTOMATICEQUIPMENT CO.,LTD is a global leading foil winding machine supplier & manufacturer with over 20 years of experiences.Ribbon foil winding machine has unique appearance, convenient operation, intuitive data display, high degree of automation, and is well received by users. This foil winding machine is widely used in oil-immersed transformer, dry transformer, special transformer and reactor production required. Foil coils are of different thicknesses copper or aluminum foil as a conductor, with wide ribbon insulation material as the insulation between layers, with narrow ribbon insulation material as the end insulation, completed winding one time, forming a coil. The inner and outer leads of the coil are welded and wrapped up at the same time.
As a result of mutual inductance, a transformer produces a transformed voltage or current when the magnetic flux produced by one winding (primary winding) links with another winding (secondary winding). There is a magnetic coupling between these two windings, and they are electrically isolated. In addition, magnetic reluctance is also known as opposition to magnetic flux flow. If, for example, the magnetic flux produced by a primary winding passes through air or any nonferrous material in order to reach a secondary winding in a transformer, it would result in a reduction in magnetic flux. Due to the high reluctance of air or nonferrous materials, it will reduce magnetic flux. See even more info on https://www.canwindg.com/
As a professional energy storage system manufacturer, Canwin specialized in battery energy storage system and containerized energy storage system manufacturing. An energy storage system, often abbreviated as ESS, is a device or group of devices assembled together, capable of storing energy in order to supply electrical energy at a later time. In the energy storage systems, the lithium energy storage battery only interacts with the energy storage converter at high voltage, and the converter takes power from the AC grid to charge the battery pack. Or the battery pack supplies power to the converter, and the electric energy is converted into AC by the converter and sent to the AC power grid.
Impedance voltage (%): Short-circuit the secondary winding of the transformer and slowly increase the voltage on the primary winding. When the short-circuit current of the secondary winding equals the rated value, the voltage applied on the primary side is the impedance voltage. It is usually expressed as a percentage of the rated voltage. Phase number and frequency: Three-phase is represented by S, and single-phase is represented by D. The frequency f of China’s national standard is 50Hz.There are countries abroad with 60Hz (such as the United States).I. Temperature rise and cooling: The difference between the temperature of the transformer winding or upper oil layer and the temperature of the surrounding environment is called the temperature rise of the winding or upper oil layer. The limit value of the temperature rise of the oil-immersed transformer winding is 65K, and the temperature rise of the oil surface is 55K.There are also various cooling methods: oil-immersed self-cooling, forced air cooling, water cooling, tube type, sheet type, etc.
Several factors can affect power quality in transmission lines. These include: Load Characteristics: Non-linear loads can generate harmonics that distort the voltage and current waveforms, affecting the power quality. Transmission Line Length: Longer transmission lines have higher impedance, which can cause voltage drops and affect power quality. Faults on the System: Short circuits, ground faults, or equipment failures can lead to voltage sags, swells, or transients, impacting power quality. Switching Operations: The switching on/off of large loads or reactive power compensation devices can cause transient overvoltages that degrade power quality. Grid Interconnections: Interconnections between different power systems can introduce disturbances, affecting the power quality.